2,916 research outputs found

    Equations of motion for Hamiltonian systems with constraints

    Get PDF
    In this paper the problem of obtaining the equations of motion for Hamiltonian systems with constraints is considered. Conditions are given which ensure that the phase space points satisfying the primary and secondary constraints form a symplectic manifold, on which the resulting equations of motion are Hamiltonian and uniquely determine

    Linearization and input-output decoupling for general nonlinear systems

    Get PDF
    Necessary and sufficient conditions are obtained for the linearization and input decoupling (by state feedback) of general nonlinear systems. It is shown how these conditions can be derived from the already known conditions for affine nonlinear systems, thereby also elucidating the existing theory for affine systems

    Robust stabilization of nonlinear systems via stable kernel representations with L2-gain bounded uncertainty

    Get PDF
    The approach to robust stabilization of linear systems using normalized left coprime factorizations with H∞ bounded uncertainty is generalized to nonlinear systems. A nonlinear perturbation model is derived, based on the concept of a stable kernel representation of nonlinear systems. The robust stabilization problem is then translated into a nonlinear disturbance feedforward H∞ optimal control problem, whose solution depends on the solvability of a single Hamilton-Jacobi equation

    Representing a nonlinear state space system as a set of higher-order differential equations in the inputs and ouputs

    Get PDF
    An algorithm is presented for transforming a nonlinear state space system into a threefold set of equations; the first subset describing the dynamics of the unobservable part of the system, the second subset representing the remaining state variables as functions of inputs and outputs and their derivatives, and the last subset defining the external behaviour of the system

    Controlled invariance for hamiltonian systems

    Get PDF
    A notion of controlled invariance is developed which is suited to Hamiltonian control systems. This is done by replacing the controlled invariantdistribution, as used for general nonlinear control systems, by the controlled invariantfunction group. It is shown how Lagrangian or coisotropic controlled invariant function groups can be made invariant by static, respectively dynamic, Hamiltonian feedback. This constitutes a first step in the development of a geometric control theory for Hamiltonian systems that explicitly uses the given structure

    A geometric approach to differential Hamiltonian systems and differential Riccati equations

    Full text link
    Motivated by research on contraction analysis and incremental stability/stabilizability the study of 'differential properties' has attracted increasing attention lately. Previously lifts of functions and vector fields to the tangent bundle of the state space manifold have been employed for a geometric approach to differential passivity and dissipativity. In the same vein, the present paper aims at a geometric underpinning and elucidation of recent work on 'control contraction metrics' and 'generalized differential Riccati equations'

    Equivalence of hybrid dynamical systems

    Get PDF
    A common theme in theoretical computer science (in particular, the theory of distributed processes and computer-aided verification) and in systems and control theory is to charac-terize systems which are ‘externally equivalent’. The intuitive idea is that we only want to distinguish between two systems if the distinction can be detected by an external syste

    Port-Hamiltonian systems: an introductory survey

    Get PDF
    The theory of port-Hamiltonian systems provides a framework for the geometric description of network models of physical systems. It turns out that port-based network models of physical systems immediately lend themselves to a Hamiltonian description. While the usual geometric approach to Hamiltonian systems is based on the canonical symplectic structure of the phase space or on a Poisson structure that is obtained by (symmetry) reduction of the phase space, in the case of a port-Hamiltonian system the geometric structure derives from the interconnection of its sub-systems. This motivates to consider Dirac structures instead of Poisson structures, since this notion enables one to define Hamiltonian systems with algebraic constraints. As a result, any power-conserving interconnection of port-Hamiltonian systems again defines a port-Hamiltonian system. The port-Hamiltonian description offers a systematic framework for analysis, control and simulation of complex physical systems, for lumped-parameter as well as for distributed-parameter models
    corecore